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In his fascinating book “To Mock a Mockingbird”, Ray Smullyan asks
whether a fixed point combinator can be constructed from the Bluebird
B, the Identity Bird I, and the Mockingbird M (sometimes called “little
omega”). Here we show that this is not possible.

The B, I monoid was first singled out as a fragment of lambda calculus
by Alonzo Church [2] in connection with the word problem. It comes up
naturally as a subset of Church’s basis B, I,C∗,W∗,K, where M = W∗ = WI,
and was further studied by Haskell Curry [3] in his work on the inter-
definability of combinators; in particular, with reference to compositive,
permutative, duplicative, and selective effect. This was taken up years
later by the author [5].

A fixed point combinator F is a combinator satisfying

Fx = x(Fx).

Now B and M are sufficient to define fixed points

M(BxM) = BxM(BxM) = x(M(BxM))

and in the presence of W, we have a fixed point combinator

B(BMW)B.
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But, without “permutative effect” it is unclear whether a fixed point com-
binator can be defined from B, I and M alone. Note that BM(B(BM))B) has
the right “Bohm tree” to be a fixed point combinator but it is not one. This
can be proved directly.

The question was studied by Wos and McCune [9], and in [7] we proved
that there is no such F satisying

Fx→→ x(Fx)

where →→ is ordinary (weak beta) reduction. There, our proof used sim-
ple typed lambda calculus; here we use Girard’s system of polymorphic
lambda calculus to completely answer the question

We shall assume for the most part that the reader is familiar with
classical lambda calculus and combinatory logic is in [2]. B, I, and M can
be regarded as constants with (weak beta) reduction

Ix� x
Bxyz� x(yz),
Mx� xx

and the corresponding conversion relation,↔, or as lambda terms

I = λx. x,
B = λxyz. x(yz), and
M = λx. xx

with beta, or beta-eta reduction. Although Smullyan’s question is about
constants with weak-beta, it suffices to consider lambda terms with beta-
eta, since these simulate the former, and the answer is negative. However,
we will need to know a few things about↔.

Fact 1:

(i) � satisfies the standardization theorem.

(ii) ↔ satisfies the Church-Rosser theorem.

Lemma 0.1. Suppose that X is a combination of B, I and M and
X x1 . . . xk ↔ xiX1 . . .Xl.

Then i = 1 and X has� normal form.
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Remark: This lemma is slightly stronger than the one stated in [7].

Proof. Suppose that Xx1 . . . xk ↔ xiX1 . . .Xl. By the Church-Rosser and
standardization theorems

X x1 . . . xk�→ xiX1 . . .Xl

by a head reduction (possibly for different X j). The proof is by induction on
the length of a head reduction. We first consider the case of a head reduction
of X. This case follows immediately from the induction hypothesis. Next
we consider the case that X is in head normal form

Case 1: X = B, I,M. This case is trivial.
Case 2: X = BUV. We have BUVx1 . . . xk � U(Vx1)x2 . . . xk. Now we can
simulate the reduction

U(Vx1)x2 . . . xk�→ xiX1 . . .Xl

by Ux1x2 . . . xk until Vx1 comes to the head or the reduction ends. But by
the induction hypothesis the second alternative is impossible. Thus, by
induction hypothesis U has a normal form. Now, when Vx1 comes to the
head, we have

Vx1V1 . . .Vm�→ xiX1 . . .X`

Now we can simulate this head reduction with

Vx1y1 . . . ym

until one of the V j comes to the head or the reduction ends. By the induction
hypothesis the first alternative is impossible so by the induction hypothesis
V has a normal form.

Case 3: X = BU. We have BUx1 . . . xk → U(x1x2)x3 . . . xk. This case is similar
to Case 2. �

It is worth noting that this lemma remains true if M is replaced by W.
We need some notation

Xnx =: X(. . . (Xx) . . .) n occurrences of X

Xnx =: ((. . . (XX) . . .)X)x n occurrences of X,
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and a definition.

Definition 0.1. BnB and BnM are “monomials”.
Each monomial is a “polynomial”.
If X and Y are polynomials then BXY is a polynomial.

Certain� normal terms like B(Bxy) are not polynomials, but they are
beta-eta convertible to polynomials.

Fact 2: (B, I monoid)

(i) Bx(Byz) beta − eta conv. B(Bxy)z

(ii) BIx beta − eta conv. x

BxI beta − eta conv. x

(iii) B(Bxy) beta − eta conv. B(Bx)(By)

Proof. Only (iii) may be unfamiliar.

B(Bx)(By)uv→ Bx(Byu)v→ x(Byuv)→ x(y(uv))← Bxy(uv)← B(Bxy)uv.

�

Corollary 0.1. If X is� normal then X beta-eta conv. to a polynomial.

We shall use only a very restricted fragment of Girard’s F1. Types
a, b, c, . . . are built up from type variables p, q, r, . . . and binary type relations
symbols P,Q,R, . . . by→ and ∀; viz, p, q, r, . . . are types if a, b are types then
so are Rab, a→ b, and ∀R a. We also have terms which belong to the kind

Type→ (Type→ Type),

and these include λpq.p and λpq.q. In short, we have no quantification
over types. This system was suggested by Urzyczyn [8]. Here we shall
make several conventions. First, we shall introduce and eliminate vacuous
quantifiers at will, since this can be done at the term level by trivial type
application and vacuous type abstraction. Second, we shall ignore the
order of quantifiers in prefixes R∗ for similar reasons. In particular, if we
write R∗ the sequence can be empty.
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Definition 0.2. A simple type a1 → (. . . (an → q) . . .) is said to be “quadratic” if

(i) Each ai has the form p1 → (. . . (pm → p) . . .) where m depends on i (these
are called “linear components ”) and all the variables are distinct.

(ii) No variable occurs more than twice.

(iii) If a variable occurs twice then its first occurrence is positive and its second
occurrence is strictly negative (we call this feature “decreasing”).

(iv) If two variables in the same component both occur again later (as compo-
nents) then they occur in the same order (“monotone”).

Here q is said to be the “principal” variable.

Definition 0.3. a is said to be “reflexive” if a = (b → c) and there exists d∗, e∗
(“reflectors”) such that [d ∗ /p∗]b = [e ∗ /p∗](b → c). a is “hyper-reflexive” if e∗
can be restricted to a change of variables.

Definition 0.4. A typing of X is said to be “tame” if it has the following properties

(i) (Composition) Every B is typed

∀P ∗ (∀R ∗ S ∗ (a→ b)→ ∀R ∗ (∀S ∗ (c→ a)→ ∀S ∗ (c→ b)))

(ii) (Semi-simple) The only non-trivial type applications are in the typings of
occurrences of M.

(iii) (Distributive) If X : a→ b and d is a strictly positive closure of b then there
is a strictly positive closure c of a such that X : c→ d

Below we shall assert that several typings are tame. This will be easy to
verify by inspecting the definitions.

Proposition 0.1. Every polynomial X has a tame typing X : a → b where b is
quadratic.

Proof. First we type polynomials X = X1@ . . .@Xk by recursion on k. For
each k we have a subsidiary recursion on the length of X1.

Basis: k = 1. Let X = B(. . . (BC) . . .) with l explicit occurrences of B and
C = B or M. First assume that l = 0.
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Case 1: C = B. Then we type B : (p→ q)→ ((r→ p)→ (r→ q))
Case 2: C = M. Then we type M:

∀R(R(t→ p)t→ R(t→ q)p)→ (R(t→ p)t→ q)→ ((t→ p)→ q)

Recursion Step: Having typed B(. . . (BC) . . .) : a → b for l − 1 explicit B’s,
type X : (a→ b)→ ((t→ a)→ (t→ b)).

Primary Recursion Step: We suppose that we have typed

X1@ . . .@Xk : a→ b

where b is a quadratic (simple) type, and a = ∀R ∗ c where c is quantifier
free. We now wish to type Y@X1@ . . .@Xk where Y = B(. . . (BC) . . .) with
l explicit occurrences of B and C = B or M. We do this by a subsidiary
recursion l.

Basis:

Case 1: C = B. By hypothesis b is simple and w.l.o.g. we may assume that
b = c → d, for otherwise, we can substitute for the principle variable of b.
We type B : (c→ d)→ ((t→ c)→ (t→ d)).
Case 2: C = M. By hypothesis b is quadratic, and thus hyperreflexive, with
reflector d∗, e∗. Now we have the typings

X1@ . . .@Xk : [e ∗ /p∗](a→ b)

X1@ . . .@Xk : [d ∗ /p∗](a→ b)

and thus a typing

X1@ . . .@Xk : [Rd ∗ e ∗ /p∗](a→ b),

where we write Rd ∗ e∗ for R d1 e1 . . .R dn en.
Hence, by the distributive property

X1@ . . .@Xk : ∀R [Rd ∗ e ∗ /p∗]a→ ∀R [Rd ∗ e ∗ /p∗]b
but
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Y : ∀R [Rd ∗ e ∗ /p∗]b→ c

where b is a quadratic (simple) type. W.l.o.g. we can assume that b =
b1 → (. . . (b1 → c) . . .), possibly substituting a linear simple type for the
principal variable of b. Now apply the construction at the basis case using
the distributive property. �

Theorem 0.1. There is no fixed point combinator.

Proof. By contradiction. Suppose that we have B, I,M combination X such
that Xx conv. x(Xx). By Lemma 1, X has a� normal form. Thus, X beta-eta
converts to a polynomial which we shall similarly denote X. Now, by the
proposition, X has a type in F1, hence, so does Xx. Thus, Xx has a beta-eta
normal form, contradicting the fact that its Bohm tree is infinite. �
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