To Type A Mockingbird

Rick Statman
Carnegie Mellon University
Department of Mathematical Sciences
Pittsburgh, PA 15213, e-mail: statman@cs.cmu.edu

December 9, 2011

In his fascinating book "To Mock a Mockingbird", Ray Smullyan asks whether a fixed point combinator can be constructed from the Bluebird B, the Identity Bird I, and the Mockingbird M (sometimes called "little omega"). Here we show that this is not possible.

The B, I monoid was first singled out as a fragment of lambda calculus by Alonzo Church [2] in connection with the word problem. It comes up naturally as a subset of Church's basis B, I, C^{*}, W^{*}, K, where $M=W^{*}=W I$, and was further studied by Haskell Curry [3] in his work on the interdefinability of combinators; in particular, with reference to compositive, permutative, duplicative, and selective effect. This was taken up years later by the author [5].

A fixed point combinator F is a combinator satisfying

$$
F x=x(F x) .
$$

Now B and M are sufficient to define fixed points

$$
M(B x M)=B x M(B x M)=x(M(B x M))
$$

and in the presence of W, we have a fixed point combinator

$$
B(B M W) B .
$$

But, without "permutative effect" it is unclear whether a fixed point combinator can be defined from B, I and M alone. Note that $B M(B(B M)) B)$ has the right "Bohm tree" to be a fixed point combinator but it is not one. This can be proved directly.

The question was studied by Wos and McCune [9], and in [7] we proved that there is no such F satisying

$$
F x \rightarrow x(F x)
$$

where \rightarrow is ordinary (weak beta) reduction. There, our proof used simple typed lambda calculus; here we use Girard's system of polymorphic lambda calculus to completely answer the question

We shall assume for the most part that the reader is familiar with classical lambda calculus and combinatory logic is in [2]. B,I and M can be regarded as constants with (weak beta) reduction
$I x \rightarrow x$
$B x y z \longmapsto x(y z)$,
$M x \mapsto x x$
and the corresponding conversion relation, \leftrightarrow, or as lambda terms

$$
\begin{aligned}
& I=\lambda x \cdot x, \\
& B=\lambda x y z \cdot x(y z), \text { and } \\
& M=\lambda x \cdot x x
\end{aligned}
$$

with beta, or beta-eta reduction. Although Smullyan's question is about constants with weak-beta, it suffices to consider lambda terms with betaeta, since these simulate the former, and the answer is negative. However, we will need to know a few things about \leftrightarrow.

Fact 1:

(i) \mapsto satisfies the standardization theorem.
(ii) \leftrightarrow satisfies the Church-Rosser theorem.

Lemma 0.1. Suppose that X is a combination of B, I and M and $X x_{1} \ldots x_{k} \leftrightarrow x_{i} X_{1} \ldots X_{l}$.

Then $i=1$ and X has \rightarrow normal form.

Remark: This lemma is slightly stronger than the one stated in [7].
Proof. Suppose that $X x_{1} \ldots x_{k} \leftrightarrow x_{i} X_{1} \ldots X_{l}$. By the Church-Rosser and standardization theorems

$$
X x_{1} \ldots x_{k} \longmapsto x_{i} X_{1} \ldots X_{l}
$$

by a head reduction (possibly for different X_{j}). The proof is by induction on the length of a head reduction. We first consider the case of a head reduction of X. This case follows immediately from the induction hypothesis. Next we consider the case that X is in head normal form

Case 1: $X=B, I, M$. This case is trivial.
Case 2: $X=B U V$. We have $B U V x_{1} \ldots x_{k} \mapsto U\left(V x_{1}\right) x_{2} \ldots x_{k}$. Now we can simulate the reduction

$$
U\left(V x_{1}\right) x_{2} \ldots x_{k} \mapsto x_{i} X_{1} \ldots X_{l}
$$

by $U x_{1} x_{2} \ldots x_{k}$ until $V x_{1}$ comes to the head or the reduction ends. But by the induction hypothesis the second alternative is impossible. Thus, by induction hypothesis U has a normal form. Now, when $V x_{1}$ comes to the head, we have

$$
V x_{1} V_{1} \ldots V_{m} \mapsto x_{i} X_{1} \ldots X_{\ell}
$$

Now we can simulate this head reduction with

$$
V x_{1} y_{1} \ldots y_{m}
$$

until one of the V_{j} comes to the head or the reduction ends. By the induction hypothesis the first alternative is impossible so by the induction hypothesis V has a normal form.

Case 3: $\mathrm{X}=B U$. We have $B U x_{1} \ldots x_{k} \rightarrow U\left(x_{1} x_{2}\right) x_{3} \ldots x_{k}$. This case is similar to Case 2.

It is worth noting that this lemma remains true if M is replaced by W. We need some notation

$$
\begin{array}{ll}
X^{n} x=: X(\ldots(X x) \ldots) & n \text { occurrences of } X \\
X_{n} x=:((\ldots(X X) \ldots) X) x & n \text { occurrences of } X,
\end{array}
$$

and a definition.
Definition 0.1. $B^{n} B$ and $B^{n} M$ are "monomials".
Each monomial is a "polynomial".
If X and Y are polynomials then $B X Y$ is a polynomial.
Certain \mapsto normal terms like $B(B x y)$ are not polynomials, but they are beta-eta convertible to polynomials.

Fact 2: $(B, I$ monoid $)$
(i) $B x(B y z)$ beta - eta conv. $B(B x y) z$
(ii) BIx beta - eta conv. x

BxI beta - eta conv. x
(iii) $B(B x y)$ beta - eta conv. $B(B x)(B y)$

Proof. Only (iii) may be unfamiliar.

$$
B(B x)(B y) u v \rightarrow B x(B y u) v \rightarrow x(B y u v) \rightarrow x(y(u v)) \leftarrow B x y(u v) \leftarrow B(B x y) u v .
$$

Corollary 0.1. If X is \rightarrow normal then X beta-eta conv. to a polynomial.
We shall use only a very restricted fragment of Girard's F_{1}. Types a, b, c, \ldots are built up from type variables p, q, r, \ldots and binary type relations symbols P, Q, R, \ldots by \rightarrow and $\forall ;$ viz, p, q, r, \ldots are types if a, b are types then so are Rab, $a \rightarrow b$, and $\forall R a$. We also have terms which belong to the kind

$$
\text { Type } \rightarrow \text { (Type } \rightarrow \text { Type), }
$$

and these include $\lambda p q . p$ and $\lambda p q . q$. In short, we have no quantification over types. This system was suggested by Urzyczyn [8]. Here we shall make several conventions. First, we shall introduce and eliminate vacuous quantifiers at will, since this can be done at the term level by trivial type application and vacuous type abstraction. Second, we shall ignore the order of quantifiers in prefixes $R *$ for similar reasons. In particular, if we write $R *$ the sequence can be empty.

Definition 0.2. A simple type $a_{1} \rightarrow\left(\ldots\left(a_{n} \rightarrow q\right) \ldots\right)$ is said to be "quadratic" if
(i) Each a_{i} has the form $p_{1} \rightarrow\left(\ldots\left(p_{m} \rightarrow p\right) \ldots\right)$ where m depends on i (these are called "linear components") and all the variables are distinct.
(ii) No variable occurs more than twice.
(iii) If a variable occurs twice then its first occurrence is positive and its second occurrence is strictly negative (we call this feature "decreasing").
(iv) If two variables in the same component both occur again later (as components) then they occur in the same order ("monotone").

Here q is said to be the "principal" variable.
Definition 0.3. a is said to be "reflexive" if $a=(b \rightarrow c)$ and there exists $d *, e *$ ("reflectors") such that $[d * / p *] b=[e * / p *](b \rightarrow c)$. a is "hyper-reflexive" if e* can be restricted to a change of variables.

Definition 0.4. A typing of X is said to be "tame" if it has the following properties
(i) (Composition) Every B is typed

$$
\forall P *(\forall R * S *(a \rightarrow b) \rightarrow \forall R *(\forall S *(c \rightarrow a) \rightarrow \forall S *(c \rightarrow b)))
$$

(ii) (Semi-simple) The only non-trivial type applications are in the typings of occurrences of M.
(iii) (Distributive) If $X: a \rightarrow b$ and d is a strictly positive closure of b then there is a strictly positive closure c of a such that $X: c \rightarrow d$

Below we shall assert that several typings are tame. This will be easy to verify by inspecting the definitions.

Proposition 0.1. Every polynomial X has a tame typing $X: a \rightarrow b$ where b is quadratic.

Proof. First we type polynomials $X=X_{1} @ \ldots @ X_{k}$ by recursion on k. For each k we have a subsidiary recursion on the length of X_{1}.

Basis: $k=1$. Let $X=B(\ldots(B C) \ldots)$ with l explicit occurrences of B and $C=B$ or M. First assume that $l=0$.

Case 1: $C=B$. Then we type $B:(p \rightarrow q) \rightarrow((r \rightarrow p) \rightarrow(r \rightarrow q))$
Case 2: $C=M$. Then we type M :

$$
\forall R(R(t \rightarrow p) t \rightarrow R(t \rightarrow q) p) \rightarrow(R(t \rightarrow p) t \rightarrow q) \rightarrow((t \rightarrow p) \rightarrow q)
$$

Recursion Step: Having typed $B(\ldots(B C) \ldots): a \rightarrow b$ for $l-1$ explicit B^{\prime} s, type $X:(a \rightarrow b) \rightarrow((t \rightarrow a) \rightarrow(t \rightarrow b))$.

Primary Recursion Step: We suppose that we have typed

$$
X_{1} @ \ldots @ X_{k}: a \rightarrow b
$$

where b is a quadratic (simple) type, and $a=\forall R * c$ where c is quantifier free. We now wish to type $Y @ X_{1} @ \ldots @ X_{k}$ where $Y=B(\ldots(B C) \ldots)$ with l explicit occurrences of B and $C=B$ or M. We do this by a subsidiary recursion l.

Basis:
Case 1: $C=B$. By hypothesis b is simple and w.l.o.g. we may assume that $b=c \rightarrow d$, for otherwise, we can substitute for the principle variable of b. We type $B:(c \rightarrow d) \rightarrow((t \rightarrow c) \rightarrow(t \rightarrow d))$.
Case 2: $C=M$. By hypothesis b is quadratic, and thus hyperreflexive, with reflector $d *, e *$. Now we have the typings

$$
\begin{aligned}
& X_{1} @ \ldots @ X_{k}:[e * / p *](a \rightarrow b) \\
& X_{1} @ \ldots @ X_{k}:[d * / p *](a \rightarrow b)
\end{aligned}
$$

and thus a typing

$$
X_{1} @ \ldots @ X_{k}:[R d * e * / p *](a \rightarrow b),
$$

where we write $R d * e^{*}$ for $R d_{1} e_{1} \ldots R d_{n} e_{n}$.
Hence, by the distributive property

$$
X_{1} @ \ldots @ X_{k}: \forall R[R d * e * / p *] a \rightarrow \forall R[R d * e * / p *] b
$$

but

$$
Y: \forall R[R d * e * / p *] b \rightarrow c
$$

where b is a quadratic (simple) type. W.l.o.g. we can assume that $b=$ $b_{1} \rightarrow\left(\ldots\left(b_{1} \rightarrow c\right) \ldots\right)$, possibly substituting a linear simple type for the principal variable of b. Now apply the construction at the basis case using the distributive property.

Theorem 0.1. There is no fixed point combinator.
Proof. By contradiction. Suppose that we have B,I,M combination X such that $X x$ conv. $x(X x)$. By Lemma 1, X has a \rightarrow normal form. Thus, X beta-eta converts to a polynomial which we shall similarly denote X. Now, by the proposition, X has a type in F_{1}, hence, so does $X x$. Thus, $X x$ has a beta-eta normal form, contradicting the fact that its Bohm tree is infinite.

References

[1] Barendregt, H., "The Lambda Calculus", North Holland, (1984).
[2] Church, A., "The Calculi of Lambda Conversion", PUP, (1941).
[3] Curry, "Combinatory Logic Vol. 1", North Holland, (1958).
[4] Smullyan, R., "To Mock a Mockingbird", Knopf (1985).
[5] Statman, R., On translating lambda terms into Combinatorics, LICS (1986).
[6] Statman, R., Freyd's hierarchy of combinator monoids, LICS (1991).
[7] Statman, R., Some examples of non-existent combinators, TCS 121, (1993).
[8] Urzyczyn, Type reconstruction in $F_{\omega}, M S C S, 7,(1997)$.
[9] Wos, and McCune, , The absence and presence of fixed point combinators,

